Extensions 1→N→G→Q→1 with N=C3xC6 and Q=C22:C4

Direct product G=NxQ with N=C3xC6 and Q=C22:C4
dρLabelID
C22:C4xC3xC6144C2^2:C4xC3xC6288,812

Semidirect products G=N:Q with N=C3xC6 and Q=C22:C4
extensionφ:Q→Aut NdρLabelID
(C3xC6):(C22:C4) = C2xS32:C4φ: C22:C4/C2D4 ⊆ Aut C3xC624(C3xC6):(C2^2:C4)288,880
(C3xC6):2(C22:C4) = C2xC62:C4φ: C22:C4/C22C4 ⊆ Aut C3xC624(C3xC6):2(C2^2:C4)288,941
(C3xC6):3(C22:C4) = C2xD6:Dic3φ: C22:C4/C22C22 ⊆ Aut C3xC696(C3xC6):3(C2^2:C4)288,608
(C3xC6):4(C22:C4) = C2xC6.D12φ: C22:C4/C22C22 ⊆ Aut C3xC648(C3xC6):4(C2^2:C4)288,611
(C3xC6):5(C22:C4) = C6xD6:C4φ: C22:C4/C2xC4C2 ⊆ Aut C3xC696(C3xC6):5(C2^2:C4)288,698
(C3xC6):6(C22:C4) = C2xC6.11D12φ: C22:C4/C2xC4C2 ⊆ Aut C3xC6144(C3xC6):6(C2^2:C4)288,784
(C3xC6):7(C22:C4) = C6xC6.D4φ: C22:C4/C23C2 ⊆ Aut C3xC648(C3xC6):7(C2^2:C4)288,723
(C3xC6):8(C22:C4) = C2xC62:5C4φ: C22:C4/C23C2 ⊆ Aut C3xC6144(C3xC6):8(C2^2:C4)288,809

Non-split extensions G=N.Q with N=C3xC6 and Q=C22:C4
extensionφ:Q→Aut NdρLabelID
(C3xC6).1(C22:C4) = S32:C8φ: C22:C4/C2D4 ⊆ Aut C3xC6244(C3xC6).1(C2^2:C4)288,374
(C3xC6).2(C22:C4) = C4.S3wrC2φ: C22:C4/C2D4 ⊆ Aut C3xC6244(C3xC6).2(C2^2:C4)288,375
(C3xC6).3(C22:C4) = (C3xC12).D4φ: C22:C4/C2D4 ⊆ Aut C3xC6484(C3xC6).3(C2^2:C4)288,376
(C3xC6).4(C22:C4) = C3:S3.2D8φ: C22:C4/C2D4 ⊆ Aut C3xC6244(C3xC6).4(C2^2:C4)288,377
(C3xC6).5(C22:C4) = C3:S3.2Q16φ: C22:C4/C2D4 ⊆ Aut C3xC6484(C3xC6).5(C2^2:C4)288,378
(C3xC6).6(C22:C4) = C32:C4wrC2φ: C22:C4/C2D4 ⊆ Aut C3xC6484(C3xC6).6(C2^2:C4)288,379
(C3xC6).7(C22:C4) = C62.D4φ: C22:C4/C2D4 ⊆ Aut C3xC648(C3xC6).7(C2^2:C4)288,385
(C3xC6).8(C22:C4) = C62.2D4φ: C22:C4/C2D4 ⊆ Aut C3xC6244+(C3xC6).8(C2^2:C4)288,386
(C3xC6).9(C22:C4) = C62.3D4φ: C22:C4/C2D4 ⊆ Aut C3xC648(C3xC6).9(C2^2:C4)288,387
(C3xC6).10(C22:C4) = C62.4D4φ: C22:C4/C2D4 ⊆ Aut C3xC696(C3xC6).10(C2^2:C4)288,388
(C3xC6).11(C22:C4) = Dic3wrC2φ: C22:C4/C2D4 ⊆ Aut C3xC6244-(C3xC6).11(C2^2:C4)288,389
(C3xC6).12(C22:C4) = (C6xC12):C4φ: C22:C4/C22C4 ⊆ Aut C3xC6244+(C3xC6).12(C2^2:C4)288,422
(C3xC6).13(C22:C4) = C62.6(C2xC4)φ: C22:C4/C22C4 ⊆ Aut C3xC648(C3xC6).13(C2^2:C4)288,426
(C3xC6).14(C22:C4) = C3:Dic3.D4φ: C22:C4/C22C4 ⊆ Aut C3xC6484-(C3xC6).14(C2^2:C4)288,428
(C3xC6).15(C22:C4) = (C6xC12):2C4φ: C22:C4/C22C4 ⊆ Aut C3xC648(C3xC6).15(C2^2:C4)288,429
(C3xC6).16(C22:C4) = C3:S3.5D8φ: C22:C4/C22C4 ⊆ Aut C3xC6248+(C3xC6).16(C2^2:C4)288,430
(C3xC6).17(C22:C4) = C32:6C4wrC2φ: C22:C4/C22C4 ⊆ Aut C3xC6488-(C3xC6).17(C2^2:C4)288,431
(C3xC6).18(C22:C4) = C3:S3.5Q16φ: C22:C4/C22C4 ⊆ Aut C3xC6488-(C3xC6).18(C2^2:C4)288,432
(C3xC6).19(C22:C4) = C32:7C4wrC2φ: C22:C4/C22C4 ⊆ Aut C3xC6488+(C3xC6).19(C2^2:C4)288,433
(C3xC6).20(C22:C4) = (C2xC62):C4φ: C22:C4/C22C4 ⊆ Aut C3xC6244(C3xC6).20(C2^2:C4)288,434
(C3xC6).21(C22:C4) = C62:3C8φ: C22:C4/C22C4 ⊆ Aut C3xC648(C3xC6).21(C2^2:C4)288,435
(C3xC6).22(C22:C4) = (C2xC62).C4φ: C22:C4/C22C4 ⊆ Aut C3xC6244(C3xC6).22(C2^2:C4)288,436
(C3xC6).23(C22:C4) = C12.77D12φ: C22:C4/C22C22 ⊆ Aut C3xC696(C3xC6).23(C2^2:C4)288,204
(C3xC6).24(C22:C4) = C12.78D12φ: C22:C4/C22C22 ⊆ Aut C3xC648(C3xC6).24(C2^2:C4)288,205
(C3xC6).25(C22:C4) = C12.D12φ: C22:C4/C22C22 ⊆ Aut C3xC6484(C3xC6).25(C2^2:C4)288,206
(C3xC6).26(C22:C4) = C12.70D12φ: C22:C4/C22C22 ⊆ Aut C3xC6244+(C3xC6).26(C2^2:C4)288,207
(C3xC6).27(C22:C4) = C12.14D12φ: C22:C4/C22C22 ⊆ Aut C3xC6484(C3xC6).27(C2^2:C4)288,208
(C3xC6).28(C22:C4) = C12.71D12φ: C22:C4/C22C22 ⊆ Aut C3xC6484-(C3xC6).28(C2^2:C4)288,209
(C3xC6).29(C22:C4) = D12:3Dic3φ: C22:C4/C22C22 ⊆ Aut C3xC696(C3xC6).29(C2^2:C4)288,210
(C3xC6).30(C22:C4) = C6.16D24φ: C22:C4/C22C22 ⊆ Aut C3xC696(C3xC6).30(C2^2:C4)288,211
(C3xC6).31(C22:C4) = C6.17D24φ: C22:C4/C22C22 ⊆ Aut C3xC648(C3xC6).31(C2^2:C4)288,212
(C3xC6).32(C22:C4) = Dic6:Dic3φ: C22:C4/C22C22 ⊆ Aut C3xC696(C3xC6).32(C2^2:C4)288,213
(C3xC6).33(C22:C4) = C6.Dic12φ: C22:C4/C22C22 ⊆ Aut C3xC696(C3xC6).33(C2^2:C4)288,214
(C3xC6).34(C22:C4) = C12.73D12φ: C22:C4/C22C22 ⊆ Aut C3xC696(C3xC6).34(C2^2:C4)288,215
(C3xC6).35(C22:C4) = D12:4Dic3φ: C22:C4/C22C22 ⊆ Aut C3xC6244(C3xC6).35(C2^2:C4)288,216
(C3xC6).36(C22:C4) = D12:2Dic3φ: C22:C4/C22C22 ⊆ Aut C3xC6484(C3xC6).36(C2^2:C4)288,217
(C3xC6).37(C22:C4) = C12.80D12φ: C22:C4/C22C22 ⊆ Aut C3xC6484(C3xC6).37(C2^2:C4)288,218
(C3xC6).38(C22:C4) = C62.6Q8φ: C22:C4/C22C22 ⊆ Aut C3xC696(C3xC6).38(C2^2:C4)288,227
(C3xC6).39(C22:C4) = C62.31D4φ: C22:C4/C22C22 ⊆ Aut C3xC6244(C3xC6).39(C2^2:C4)288,228
(C3xC6).40(C22:C4) = C62.32D4φ: C22:C4/C22C22 ⊆ Aut C3xC6244(C3xC6).40(C2^2:C4)288,229
(C3xC6).41(C22:C4) = C3xC42:4S3φ: C22:C4/C2xC4C2 ⊆ Aut C3xC6242(C3xC6).41(C2^2:C4)288,239
(C3xC6).42(C22:C4) = C3xC23.6D6φ: C22:C4/C2xC4C2 ⊆ Aut C3xC6244(C3xC6).42(C2^2:C4)288,240
(C3xC6).43(C22:C4) = C3xC6.D8φ: C22:C4/C2xC4C2 ⊆ Aut C3xC696(C3xC6).43(C2^2:C4)288,243
(C3xC6).44(C22:C4) = C3xC6.SD16φ: C22:C4/C2xC4C2 ⊆ Aut C3xC696(C3xC6).44(C2^2:C4)288,244
(C3xC6).45(C22:C4) = C3xC2.Dic12φ: C22:C4/C2xC4C2 ⊆ Aut C3xC696(C3xC6).45(C2^2:C4)288,250
(C3xC6).46(C22:C4) = C3xD6:C8φ: C22:C4/C2xC4C2 ⊆ Aut C3xC696(C3xC6).46(C2^2:C4)288,254
(C3xC6).47(C22:C4) = C3xC2.D24φ: C22:C4/C2xC4C2 ⊆ Aut C3xC696(C3xC6).47(C2^2:C4)288,255
(C3xC6).48(C22:C4) = C3xC12.46D4φ: C22:C4/C2xC4C2 ⊆ Aut C3xC6484(C3xC6).48(C2^2:C4)288,257
(C3xC6).49(C22:C4) = C3xC12.47D4φ: C22:C4/C2xC4C2 ⊆ Aut C3xC6484(C3xC6).49(C2^2:C4)288,258
(C3xC6).50(C22:C4) = C3xD12:C4φ: C22:C4/C2xC4C2 ⊆ Aut C3xC6484(C3xC6).50(C2^2:C4)288,259
(C3xC6).51(C22:C4) = C122:C2φ: C22:C4/C2xC4C2 ⊆ Aut C3xC672(C3xC6).51(C2^2:C4)288,280
(C3xC6).52(C22:C4) = C62.110D4φ: C22:C4/C2xC4C2 ⊆ Aut C3xC672(C3xC6).52(C2^2:C4)288,281
(C3xC6).53(C22:C4) = C62.113D4φ: C22:C4/C2xC4C2 ⊆ Aut C3xC6144(C3xC6).53(C2^2:C4)288,284
(C3xC6).54(C22:C4) = C62.114D4φ: C22:C4/C2xC4C2 ⊆ Aut C3xC6288(C3xC6).54(C2^2:C4)288,285
(C3xC6).55(C22:C4) = C6.4Dic12φ: C22:C4/C2xC4C2 ⊆ Aut C3xC6288(C3xC6).55(C2^2:C4)288,291
(C3xC6).56(C22:C4) = C12.60D12φ: C22:C4/C2xC4C2 ⊆ Aut C3xC6144(C3xC6).56(C2^2:C4)288,295
(C3xC6).57(C22:C4) = C62.84D4φ: C22:C4/C2xC4C2 ⊆ Aut C3xC6144(C3xC6).57(C2^2:C4)288,296
(C3xC6).58(C22:C4) = C12.19D12φ: C22:C4/C2xC4C2 ⊆ Aut C3xC672(C3xC6).58(C2^2:C4)288,298
(C3xC6).59(C22:C4) = C12.20D12φ: C22:C4/C2xC4C2 ⊆ Aut C3xC6144(C3xC6).59(C2^2:C4)288,299
(C3xC6).60(C22:C4) = C62.37D4φ: C22:C4/C2xC4C2 ⊆ Aut C3xC672(C3xC6).60(C2^2:C4)288,300
(C3xC6).61(C22:C4) = C62.15Q8φ: C22:C4/C2xC4C2 ⊆ Aut C3xC6288(C3xC6).61(C2^2:C4)288,306
(C3xC6).62(C22:C4) = C3xC12.55D4φ: C22:C4/C23C2 ⊆ Aut C3xC648(C3xC6).62(C2^2:C4)288,264
(C3xC6).63(C22:C4) = C3xC6.C42φ: C22:C4/C23C2 ⊆ Aut C3xC696(C3xC6).63(C2^2:C4)288,265
(C3xC6).64(C22:C4) = C3xD4:Dic3φ: C22:C4/C23C2 ⊆ Aut C3xC648(C3xC6).64(C2^2:C4)288,266
(C3xC6).65(C22:C4) = C3xC12.D4φ: C22:C4/C23C2 ⊆ Aut C3xC6244(C3xC6).65(C2^2:C4)288,267
(C3xC6).66(C22:C4) = C3xC23.7D6φ: C22:C4/C23C2 ⊆ Aut C3xC6244(C3xC6).66(C2^2:C4)288,268
(C3xC6).67(C22:C4) = C3xQ8:2Dic3φ: C22:C4/C23C2 ⊆ Aut C3xC696(C3xC6).67(C2^2:C4)288,269
(C3xC6).68(C22:C4) = C3xC12.10D4φ: C22:C4/C23C2 ⊆ Aut C3xC6484(C3xC6).68(C2^2:C4)288,270
(C3xC6).69(C22:C4) = C3xQ8:3Dic3φ: C22:C4/C23C2 ⊆ Aut C3xC6484(C3xC6).69(C2^2:C4)288,271
(C3xC6).70(C22:C4) = C62:7C8φ: C22:C4/C23C2 ⊆ Aut C3xC6144(C3xC6).70(C2^2:C4)288,305
(C3xC6).71(C22:C4) = C62.116D4φ: C22:C4/C23C2 ⊆ Aut C3xC6144(C3xC6).71(C2^2:C4)288,307
(C3xC6).72(C22:C4) = (C6xD4).S3φ: C22:C4/C23C2 ⊆ Aut C3xC672(C3xC6).72(C2^2:C4)288,308
(C3xC6).73(C22:C4) = C62.38D4φ: C22:C4/C23C2 ⊆ Aut C3xC672(C3xC6).73(C2^2:C4)288,309
(C3xC6).74(C22:C4) = C62.117D4φ: C22:C4/C23C2 ⊆ Aut C3xC6288(C3xC6).74(C2^2:C4)288,310
(C3xC6).75(C22:C4) = (C6xC12).C4φ: C22:C4/C23C2 ⊆ Aut C3xC6144(C3xC6).75(C2^2:C4)288,311
(C3xC6).76(C22:C4) = C62.39D4φ: C22:C4/C23C2 ⊆ Aut C3xC672(C3xC6).76(C2^2:C4)288,312
(C3xC6).77(C22:C4) = C32xC2.C42central extension (φ=1)288(C3xC6).77(C2^2:C4)288,313
(C3xC6).78(C22:C4) = C32xC22:C8central extension (φ=1)144(C3xC6).78(C2^2:C4)288,316
(C3xC6).79(C22:C4) = C32xC23:C4central extension (φ=1)72(C3xC6).79(C2^2:C4)288,317
(C3xC6).80(C22:C4) = C32xC4.D4central extension (φ=1)72(C3xC6).80(C2^2:C4)288,318
(C3xC6).81(C22:C4) = C32xC4.10D4central extension (φ=1)144(C3xC6).81(C2^2:C4)288,319
(C3xC6).82(C22:C4) = C32xD4:C4central extension (φ=1)144(C3xC6).82(C2^2:C4)288,320
(C3xC6).83(C22:C4) = C32xQ8:C4central extension (φ=1)288(C3xC6).83(C2^2:C4)288,321
(C3xC6).84(C22:C4) = C32xC4wrC2central extension (φ=1)72(C3xC6).84(C2^2:C4)288,322

׿
x
:
Z
F
o
wr
Q
<